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11. ORDINAL NUMBERS 
 

§11.1. Transitive Sets 
 We now turn our attention to ordinal numbers. 

With finite numbers the cardinal numbers, apart from 

zero, are 1, 2, 3, … while the ordinal numbers are 1st, 2nd, 

3rd, …  There is really very little difference.  For infinite 

sets there’s a big difference. While cardinal numbers 

simply measure the size of a set, ordinal numbers describe 

the structure of a well-ordered set. 

 Consider the well-ordered set {1, 2, 3, … , 0}. As 

a set, this is no bigger than {1, 2, 3, …}. But as well-

ordered sets the ordering is quite different. One set has a 

largest while the other does not. 

 

A set x is transitive if x  x, that is, if every 

element of an element of x is itself an element of x. 

 

Example 1: Recall that (1, 2) = {{1}, {1, 2}}. 

x = {0, 1, 2, {2}, {1, 2}, (1, 2)} is not transitive since 

x = {0, 1, 2, {1}, {1, 2}} and 

{1} is not an element of x. 

However y = {0, 1, 2, {2}, {1, 2}, (2, 1)} is transitive since 

y = {, {0}, {0, 1}, {2}, {0}, {0, 1}, {{2}, {2, 1}}} 

   = {, {0}, {0, 1}, {2}, {1, 2}, {{2}, {1, 2}} 

and so y = {0, 0, 1, 2, 1, 2, {2}, {1, 2}} 

                 = {0, 1, 2, {2}, {1, 2}} which is a subset of x. 
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The natural numbers are transitive, and the set of 

natural numbers itself is transitive. 

 

Theorem 1: A set S is transitive if and only if S (S). 

Proof: Suppose S is transitive. 

We must show that S  (S), that is, every element of S 

is a subset of S. 

Let y  S. If z  y then z   S and so z  S. 

Hence y  S, as required. 

 

Now suppose that S  (S). Let y  S. 

Then for some z, y  z and z  S. 

Since S  (S), z  (S), that is, z  S. 

Since y  z, then y  S. 

We have therefore shown that S  S. ☺ 

 

Example 1 (continued): Observe that every element of y 

is a subset of y. 

 

Theorem 2: If the elements of S are transitive then so are 

S and S. 

Proof: Suppose that the elements of S are transitive. 

(1) Let  y  S. 

We must show that y  S, that is y  u for all u  S. 

Let u  S. Then by our assumption, u is transitive. 

Since y  S, y  z for some z  S. 

Hence z  u. Since y  z  u, y  u. 
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(2) Let y  S. Then for some z, y  z  S. 

Then z  u for some u  S. 

Since y  z  u and u is transitive, y  u. 

Thus y  S. Hence x is transitive. ☺ 

 

Example 2: The sets  x = {{1, {1}}, {1}, 0, 1, 2} and 

                                   y = {{2, {1}}, {1}, 0, 1, 2} are 

transitive. Let u = {x, y}. 

Then u = x  y = {{1}, 0, 1, 2} and 

x = {{1, {1}}, {2, {1}}, {1}, 0, 1, 2}, both of which are 

transitive. 

 

§11.2. Ordinal Numbers 
An ordinal number is a transitive set that is well-

ordered by the relation ‘ or =’. So, for ordinals, < and  

are equivalent. We denote the class of ordinals by Ord. 

 

 Note that all natural numbers are ordinal numbers. 

So is the set ℕ itself. It’s odd to think of ℕ as being a 

number. In fact, when we are thinking of ℕ as a number 

we use a different symbol, . But remember that ℕ = . 

Before we’ve finished we’ll be using yet another symbol 

for ℕ. 

 

If (X, ) is a well-ordered set and is similar to the 

ordinal  we say that  is its ordinal number. We shall 

show that this is uniquely defined. We denote the ordinal 



 200 

of X by ord (X, ). If the ordering is understood we can 

write ord(X). 

 

Theorem 3: If  is an ordinal number, then so is +. ☺ 

 

Theorem 4: Elements of ordinals are ordinals. 

Proof: Elements of ordinals are subsets and so are well-

ordered. 

Let x  y  z  , where  is an ordinal. 

Then since  is transitive, x, y, z are elements of . 

Since  is transitive on , x  z. ☺ 

 

Theorem 5: Similar ordinals are equal. 

Proof: Let F:→ be a similarity. 

Let x be the smallest element of  such that F(x)  x. 

If y < x then y = F(y) < F(x), whence x  F(x). 

Now suppose that y < F(x). 

Then, since F−1  is a similarity, F−1(y) < x. 

Hence y = F(F−1(y)) = FF−1(y) < x. 

So F(x)  x, a contradiction. Hence there’s no such x. ☺ 

 

Theorem 6: If  and  are ordinal numbers and    

then   . 

Proof: Suppose ,  are ordinals such that   . 

Let x be the least element of  − . 

Since x   and  is transitive, x  . 

Since ( − )  x = 0, x  . 

Let y  .  Then y  . 
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Since {x, y} has a least, either x  y or x = y or y  x. 

If x  y or x = y, then x  , contradicting the fact that 

x   − . 

Thus y  x and so   x. 

But x   and so x = . As x  ,   . ☺ 

 

Theorem 7: Transitive subsets of ordinals are ordinals. 

Proof: Suppose there is an ordinal  having a transitive 

subset which is not itself an ordinal, and suppose  is the 

least element of + which has such a subset. Then there is 

some X   which is transitive but not an ordinal. 

 Hence X is not well-ordered by . Let 0  Y  X 

and suppose that it has no least. 

 Now the elements of Y are elements of the ordinal 

 and so are ordinals, and hence transitive. Hence Y is 

transitive. 

 

Let y  Y. Then Y  y  Y  X  . Hence y  .  

Thus y is an ordinal, and being less than , the transitive 

subset Y must be an ordinal. 

By Theorem 6, Y  Y.  But clearly Y is the least 

element of Y, a contradiction. ☺ 

 

Theorem 8: If X is a set of ordinals then X is an ordinal. 

Proof: Suppose X is a set of ordinals. Then X is 

transitive. 

Let 0  Y  X. Then the elements of Y are ordinals and 

so Y is transitive. 
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Let   Y. Then Y  . Thus Y is an ordinal. 

Hence Y   or Y =   Y. 

If Y  Y, Y  Y, a contradiction. 

Thus Y is the least element of Y. 

Hence X is well-ordered by  and so X is an ordinal. 
☺ 

 

 The following theorem is known as a ‘paradox’ but 

it’s just an ordinary theorem. It gets its name because a 

paradox arises if we claim that the class of ordinals is a 

set instead of a proper class. 

 

Theorem 9 (BURALI-FORTI PARADOX): The class 

of ordinals is a proper class. 

Proof: Suppose Ord is a set. 

Then Ord  Ord and so Ord  (Ord)+  Ord. 

Hence Ord  Ord, a contradiction. ☺ 

 

§11.3. Transfinite Induction 
 The method of Proof by Induction is very useful in 

mathematics. It works because every non-empty set of 

natural numbers has a least, that is, the set of natural 

numbers is well-ordered by the usual ordering.  Finite 

induction can be extended to infinite sets, provided we 

can well-order them. 
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Theorem 10 (PROOF BY TRANSFINITE 

INDUCTION): 

Suppose W is a well-ordered set and X  W. 

Suppose that X has the property that whenever all the 

predecessors of  X  are in X then so is X. Then X = W. 

Proof: Suppose X  W.  Then m = min(W − X), a 

contradiction! ☺ 

 

We can also define things by transfinite induction. The 

following is a special case. 

 

Theorem 11: Suppose G is a generalized function whose 

domain is S, a subset of Ord with no maximum. Then 

there exists a unique function F on S such that F(x+) = 

G(F(x)) for all x  S and F(x) = {F(y) | y < x} if x has 

no predecessor.  

 

§11.4. Ordinal Arithmetic 
 A non-zero ordinal is a limit ordinal if it has no 

immediate predecessor.  An obvious example is , which 

is our alternative symbol for the set of natural numbers. 

 We define addition of ordinals by transfinite 

induction as follows: 

(A0)  + 0 = ; 

(A1)  + + = ( + )+; 

(A2)  +  =  { +  |  < } if  is a limit ordinal. 
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Example 3: Successively adding 1 to  we get the 

sequence  + 1,  + 2, … 

 We define multiplication of ordinals by transfinite 

induction as follows: 

(M0) 0 = 0; 

(M1) + = () + ; 

(M2)  =  { |  < } if  is a limit ordinal. 

 

 We define exponentiation of ordinals by 

transfinite induction as follows: 

(E0) 0 = 1; 

(E1) 
+
 = .; 

(E2)  = { +  |  < } if  is a limit ordinal and 

                                                                                  0; 

(E3) 0 = 0 if  is a limit ordinal. 

 

Examples 4: 

 + 1 =  + 0+ 

          = ( + 0)+ by (A1) 

          = + by (A0) 

           . 

1 +  = {1 + n | n < } 

          = . 

2 = {2n | n < } by (M2) 

     = . 

2 = 1+ 

      = 1 +  by (M1) 

      = 0+ +  
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      = (0 + ) +  by (M1) 

      = (0 + ) +  by (M0) 

      = {0 + n | n < } +  

      =  +  

      =  { + n | n < } by (A2). 

2 = {2n | n < } by (E2) 

     =  

 

§11.5. Pictorial Representation of 

Ordinal Numbers 
 It’s useful to be able to draw pictures of ordinal 

numbers, or at least some of them. We begin by 

representing a finite ordinal, n, by a row of n dots. 

 

Example 5: The number 5 is represented  by: 

 

We could then represent  by                            but 

a more compact notation would be to have just one dot 

and to represent the row of small dots by an arrow:  

We can represent a + b by depicting a and then attaching 

a picture of b on its right. 

 

Example 6:  + 5 would become  

2 would then be   

2 + 3 would be  

3 would be  

2 would be represented by an infinite row of the symbol 

for , or more simply by  

….. 
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Each arrow is assumed to replicate whatever is before it 

an infinite number of times. 

So 3 +  + 2 would be 

 

Then what about ?  This should be a dot 

followed by infinitely many arrows. We can depict this by 

bracketing an arrow and following this by an arrow: 

 

In order that our convention that an arrow 

replicates everything on its left has to be modified to say 

that it replicates everything on its left back to the 

beginning or the next bracket. 

To consider ordinals much beyond this would 

stretch our notation and also our ability to meaningfully 

picture them. However the ordinals go far beyond the 

level to which we can easily describe them. 

 

§11.6. Definition of Cardinal Numbers 
 At long last we can define a cardinal number as a 

set. A cardinal number is simply an ordinal number that 

is not equivalent to any of its predecessors. This means 

that all of the natural numbers are also cardinal numbers. 

So too is the ordinal number , that we once knew as ℕ. 

 In honour of this new role for  we use another 

notation, namely 0. So ℕ =  = 0. When we’re 

thinking of it as a set we usually use the symbol ℕ. When 

we think of it as an ordinal number we write it as  and 

when we think of it as a cardinal number we write it as 

0. 
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SET  ORDINAL 

NUMBER 

 CARDINAL 

NUMBER 

ℕ =  = 0 

 

Theorem 16: The class of ordinals that are equivalent to 

a set S is itself a set. 

Proof: Well order (S) and let  be the corresponding 

ordinal. Let Ord(S) be the class of ordinals that are 

equivalent to S. 

Let  be an ordinal that is equivalent to S. 

Then  < , that is,   . 

So Ord(S) = {   |   S}. ☺ 

 

 Now that we have established that Ord(S) is a set 

we can define the cardinal number of S to be #S, the 

smallest element of Ord(S). 

 We are now in a position to properly define the 

alephs, that is, to write every infinite cardinal number as 

 for some ordinal . 

 

 Let  be an infinite cardinal number. Let  S  be the 

set of infinite cardinal numbers that are less than  (less 

than in the sense of cardinal numbers). S is well-ordered 

by . 

Let    be the ordinal number of this well-ordered set. 

Then we denote  by . 
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Example 7: Let   = .  Then S = {0, 1, 2, …} 

with 0 < 1 < 2 < … 

The ordinal number of this well-ordered set is , which 

justifies the use of the notation . 

 

Example 8: Let   = +1. 

Then S = {0, 1, 2, …, } with 

0 < 1 < 2 < … <  

The ordinal number of this well-ordered set is  + 1, 

which justifies the use of the notation +1. 

 

Theorem 17:  If  is an ordinal number and # =  then, 

as ordinals,    < +1. 

Proof:    by definition of cardinals. 

If +1   then +1  , a contradiction. ☺ 

 

Theorem 18:  = { |  < } is a cardinal number. 

Proof:  is an ordinal number. 

Suppose  = # and  < .  

Then   , so    for some  < . 

Then  <   , a contradiction. ☺ 

 

Theorem 19: { |  < +} = . 

Proof: If  < + then    and so   . ☺ 
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Theorem 20: If  has no predecessor then 

{ |  < } = . 

Proof: Let  = { |  < }. 

For all  < ,    and so   . 

Hence   . 

If  < ,  + 1 <  so +1  , a contradiction. ☺ 
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