11. ORDINAL NUMBERS

811.1. Transitive Sets

We now turn our attention to ordinal numbers.
With finite numbers the cardinal numbers, apart from
zero, are 1, 2, 3, ... while the ordinal numbers are 1%, 2",
3 ... There is really very little difference. For infinite
sets there’s a big difference. While cardinal numbers
simply measure the size of a set, ordinal numbers describe
the structure of a well-ordered set.

Consider the well-ordered set {1, 2, 3, ..., Xo}. As
a set, this is no bigger than {1, 2, 3, ...}. But as well-
ordered sets the ordering is quite different. One set has a
largest while the other does not.

A set x is transitive if Ux c X, that is, if every
element of an element of x is itself an element of x.

Example 1: Recall that (1, 2) = {{1}, {1, 2}}.
x =40, 1, 2, {2}, {1, 2}, (1, 2)} is not transitive since
wux={0, 1, 2, {1}, {1, 2}} and
{1} is not an element of x.
Howevery={0, 1, 2,{2}, {1, 2}, (2, 1)} is transitive since
y ={<, {0}, {0, 1}, {2}, {0}, {0, 1}, {{2}, {2, 1}}}

={4,{0}, {0, 1}, {2}, {1, 2}, {{2}. {1, 2}}
andsouwy=4{0,0,1,2,1,2, {2}, {1, 2}}

={0, 1, 2, {2}, {1, 2}} which is a subset of x.
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The natural numbers are transitive, and the set of
natural numbers itself is transitive.

Theorem 1: A set S is transitive if and only if S ¢ p (S).
Proof: Suppose S is transitive.

We must show that S ¢ (S), that is, every element of S
IS a subset of S.

Letye S.Ifzeythenze uSandsoz € S.

Hencey — S, as required.

Now suppose that S < @(S). Lety € US.
Then for somez,y e zandz € S.

Since Sc ©(S),z € ¢(S), thatis, z < S.
Sincey € z,theny € S.

We have therefore shown that US ' S. %©

Example 1 (continued): Observe that every element of y
Is a subset of y.

Theorem 2: If the elements of S are transitive then so are
NS and US.

Proof: Suppose that the elements of S are transitive.

(1) Let y € uNS.

We must show thaty € NS, thatisy € uforallu € S.
Let u € S. Then by our assumption, u is transitive.
Sincey € unS,y € zforsomez € NS.

Hencez e u.Sincey ez e u,y € u.
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(2) Lety € UUS. Then for some z,y € z € US.
Thenz € u forsomeu € S.

Sincey € z € uand u is transitive, y € u.

Thus y e US. Hence wx is transitive. % ©

Example 2: The sets x ={{1, {1}}, {1}, 0, 1, 2} and

y = {{2, {13}, {1}, 0, 1, 2} are
transitive. Let u = {x, y}.
Thennu=xny={{1}0, 1, 2} and
ux = {{1, {1}}, {2, {1}}, {1}, 0, 1, 2}, both of which are
transitive.

§11.2. Ordinal Numbers

An ordinal number is a transitive set that is well-
ordered by the relation ‘e or =". So, for ordinals, <and e
are equivalent. We denote the class of ordinals by Ord.

Note that all natural numbers are ordinal numbers.
So is the set N itself. It’s odd to think of N as being a
number. In fact, when we are thinking of N as a number
we use a different symbol, ®. But remember that N = .
Before we’ve finished we’ll be using yet another symbol
for N.

If (X, <) is a well-ordered set and is similar to the

ordinal o we say that o is its ordinal number. We shall
show that this is uniquely defined. We denote the ordinal
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of X by ord (X, £). If the ordering is understood we can
write ord(X).

Theorem 3: If o is an ordinal number, then so is o*. % ©

Theorem 4: Elements of ordinals are ordinals.
Proof: Elements of ordinals are subsets and so are well-
ordered.

Letx € y € z € a, where o is an ordinal.
Then since a is transitive, X, y, z are elements of a.
Since e is transitive on a, x € z. Y ©

Theorem 5: Similar ordinals are equal.

Proof: Let F:a— be a similarity.

Let x be the smallest element of o such that F(x) = x.

If y <xtheny = F(y) < F(x), whence x < F(x).

Now suppose that y < F(x).

Then, since F is a similarity, F(y) < x.

Hence y = F(F1(y)) = FF(y) < x.

So F(x) = x, a contradiction. Hence there’s no such x. %©

Theorem 6: If o and B are ordinal numbers and o < B
then a € B.

Proof: Suppose a, B are ordinals such that o — .

Let x be the least element of B — a.

Since x € B and B is transitive, x  B.

Since(B—a) "nx=0,xca.

Lety € a. Theny e B.
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Since {Xx, y} has a least, either x e yorx =y ory € x.

If X € yor x =Yy, then x € a, contradicting the fact that
Xep—-a.

Thusy € xand so a. C X.

Butxcaandsox=a.Asx e B, a € B. YO

Theorem 7: Transitive subsets of ordinals are ordinals.
Proof: Suppose there is an ordinal o having a transitive
subset which is not itself an ordinal, and suppose f is the
least element of o.* which has such a subset. Then there is
some X < B which is transitive but not an ordinal.

Hence X is not well-ordered by . Let 0 # Y < X
and suppose that it has no least.

Now the elements of Y are elements of the ordinal
B and so are ordinals, and hence transitive. Hence NY is
transitive.

Lety e Y. ThennY cy e Y c X < B. Hencey € B.
Thus y is an ordinal, and being less than B, the transitive
subset Y must be an ordinal.

By Theorem 6, nY € Y. But clearly NY is the least
element of Y, a contradiction. % ©

Theorem 8: If X is a set of ordinals then WX is an ordinal.
Proof: Suppose X is a set of ordinals. Then UX is
transitive.

Let 0 # Y < UX. Then the elements of Y are ordinals and
S0 NY Is transitive.
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Let o € Y. Then nY < a. Thus NY is an ordinal.
Hence Y e aornY =a €Y.

If Y ¢ Y, Y e NY, a contradiction.

Thus MY is the least element of .

Hence UX is well-ordered by € and so WX is an ordinal.
%O

The following theorem is known as a ‘paradox’ but
it’s just an ordinary theorem. It gets its name because a
paradox arises if we claim that the class of ordinals is a
set instead of a proper class.

Theorem 9 (BURALI-FORTI PARADOX): The class
of ordinals is a proper class.

Proof: Suppose Ord is a set.

Then UOrd € Ord and so UOrd € (LOrd)* e Ord.
Hence UOrd e LOrd, a contradiction. %©

§11.3. Transfinite Induction

The method of Proof by Induction is very useful in
mathematics. It works because every non-empty set of
natural numbers has a least, that is, the set of natural
numbers is well-ordered by the usual ordering. Finite
induction can be extended to infinite sets, provided we
can well-order them.
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Theorem 10 (PROOF BY TRANSFINITE
INDUCTION):

Suppose W is a well-ordered set and X < W.

Suppose that X has the property that whenever all the
predecessors of X are in X then so is X. Then X = W.
Proof: Suppose X < W. Then m = min(W — X), a
contradiction! % ©

We can also define things by transfinite induction. The
following is a special case.

Theorem 11: Suppose G is a generalized function whose
domain is S, a subset of Ord with no maximum. Then
there exists a unique function F on S such that F(x*) =
G(F(x)) for all x € S and F(x) = U{F(y) | y < x} if X has
no predecessor. %

811.4. Ordinal Arithmetic
A non-zero ordinal is a limit ordinal if it has no
immediate predecessor. An obvious example is , which
Is our alternative symbol for the set of natural numbers.
We define addition of ordinals by transfinite
induction as follows:
(A0)a+0=0q;
(Al) o+ " = (o + B)7;
(A2) o+t pB=uf{a+y|y<B}ifBisalimitordinal.
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Example 3: Successively adding 1 to o we get the
sequencem +1, m + 2, ...

We define multiplication of ordinals by transfinite
induction as follows:
(MO0) a0 = 0;
(M1) ap” = (ap) + o
(M2) ap = {ay |y < B} if B isalimit ordinal.

We define exponentiation of ordinals by
transfinite induction as follows:

(E0) a®=1;

(E)) aB = ab.o;

(E2) of = U{a + v |y < B} if B is alimit ordinal and
a=0;

(E3) 0P = 0 if B is a limit ordinal.

Examples 4:
o+tl=wn+0"
= (o +0)" by (A1)
=o' by (A0)
# .
lto=u{l+n|n<on}
= m.
20 = U{2n | n < ®} by (M2)
= m.
®w2=wml"
=0l + o by (M1)
=0+ o
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= (00 + ®) + ® by (M1)
=(0+ ») + ® by (M0)
=u{0+n|n<o}to
—ot+to
=u{w+n|n<ow}by(A2).
2°=u{2"|n< o} by (E2)

-0

§11.5. Pictorial Representation of

Ordinal Numbers

It’s useful to be able to draw pictures of ordinal
numbers, or at least some of them. We begin by
representing a finite ordinal, n, by a row of n dots.

Example 5: The number 5 is represented by:
0000
We could then represent o by e ® ® ----.  but
a more compact notation would be to have just one dot
and to represent the row of small dots by an arrow: @—>
We can represent a + b by depicting a and then attaching
a picture of b on its right.

Example 6: ® + 5 would become —0® © ® ® ®

®2 would then be —0—>

®2 +3wouldbe e—0—>0 © ©

®3 would be —0—0—

o? would be represented by an infinite row of the symbol
for w, or more simply by o>
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Each arrow is assumed to replicate whatever is before it
an infinite number of times.
So w®+ w+2would be @&—>—>—0—>0 @

Then what about ®®? This should be a dot
followed by infinitely many arrows. We can depict this by
bracketing an arrow and following this by an arrow:

In order that our convention that an arrow
replicates everything on its left has to be modified to say
that it replicates everything on its left back to the
beginning or the next bracket.

To consider ordinals much beyond this would
stretch our notation and also our ability to meaningfully
picture them. However the ordinals go far beyond the
level to which we can easily describe them.

811.6. Definition of Cardinal Numbers

At long last we can define a cardinal number as a
set. A cardinal number is simply an ordinal number that
IS not equivalent to any of its predecessors. This means
that all of the natural numbers are also cardinal numbers.
So too is the ordinal number ®, that we once knew as N.

In honour of this new role for ® we use another
notation, namely No. So N = © = N, When we’re
thinking of it as a set we usually use the symbol N. When
we think of it as an ordinal number we write it as » and
when we think of it as a cardinal number we write it as
No.

206



SET ORDINAL CARDINAL
NUMBER NUMBER

N = Q) = No

Theorem 16: The class of ordinals that are equivalent to
aset Sis itself a set.

Proof: Well order o (S) and let y be the corresponding
ordinal. Let Ord(S) be the class of ordinals that are
equivalent to S.

Let o be an ordinal that is equivalent to S.

Then a <y, thatis, a € y.

SoOrd(S)={a ey|a~S} %O

Now that we have established that Ord(S) is a set
we can define the cardinal number of S to be #S, the
smallest element of Ord(S).

We are now in a position to properly define the
alephs, that is, to write every infinite cardinal number as

N for some ordinal (.

Let y be an infinite cardinal number. Let Sy be the
set of infinite cardinal numbers that are less than vy (less
than in the sense of cardinal numbers). Sy is well-ordered
by <.

Let B be the ordinal number of this well-ordered set.
Then we denote y by ¥p.
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Example 7: Let B = NXe. Then Sp = {No, N1, X, ...}
with Ko< N1 <N < ...

The ordinal number of this well-ordered set is ®, which
justifies the use of the notation X .

Example 8: Let B = Np+1.
Then SB = {No, N1, Nz, cens N(D} with
No< N1 <N <...<Np
The ordinal number of this well-ordered set is o + 1,
which justifies the use of the notation X w+1.

Theorem 17: If o is an ordinal number and #a. = &g then,
as ordinals, Npg < o < Np+1.

Proof: Xp < a by definition of cardinals.

If Np+1 < o then Np.1 < N, a contradiction. % ©

Theorem 18: y = U{N« | o < B} is a cardinal number.
Proof: y is an ordinal number.

Suppose N =#y and Ns <y.
Then N5 € v, S0 N§ € Nq for some a < f3.
Then X5 < 8o <7, a contradiction. % ©

Theorem 19: U{Na | o < '} = Np.
Proof: If o < B*then o< B and so Nq = Np. YO
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Theorem 20: If B has no predecessor then
U{Na | o< B} = NB
Proof: Let 8y = U{No | a < B}.

Forall a < 8, No < Np and so Xy < Np.
Hence y < B.

Ify<B,y+1<Pso Ny c Ny, acontradiction. %©
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